AD=A093 190 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE-=ETC F/6 12/1
AN OUTLOOK ON TRUTH MAINTENANCE. (U}
AUG 80 D A MCALLESTER NOGO14=75-C=0643
NL

UNCLASSIFIED A I1-M=551

TTFEEER

o

A%

N

MICROCOPY RESOLUTION TEST CHART
NAHUNAL BUREAU Of STANDARDC-1963-A

N

13.]

i

w

i

==
N

~N

EE
o

N

r
r
Fr
===
.“) mH'

> |

. — .:.’ £'-.1 s O ’
UNCLASSIFIED ' % 1y =
SECURITY CLASSIFICATION OF THIS PAGE (WhedPD.
REPORT DOCUMENTATION PA ssr%%%"égigﬁ‘é%’ﬂg";?om
v "EPOﬂfNUNEE;/ 2. GOVY ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
AIM 55 1D- A0 i3 /90
‘/TITLE (end Subtitle) //« 15 TYPE OF REPORY & PERIOD COVERED
= .
(-] _Cy An Outlook on Truth Maintenance. /4 memorandum 1.
m - 1:~/r‘nrommc ORG. REPORT NUMBER
g
7. AUTHOR(®) 8. CONTRACT ON GRANT NUMBER(s)
N B 7 e |
/9 David A.[McAllester {12 nooo14-75-C- 0543"{ i
m 1 " 5 Fle MCS77-04828 ;
m 3. PERFORMING ORGANIZATION NAME AND ADDRESS = »nm
Artificial Intelligence Laboratory AREA & WORK UNIT NUMBER
c 545 Technology Square /J i/
Cambridge, Massachusetts 02139 et
E 1. ACdONTROLLdINGROFFICE NhAN; AND ADDRESS // 12. REPOR___,AIL‘—"“
vanced Research Projects Agency - / Augusst 198
5:: 1400 Wilson Blvd ‘-.N_///_/*,_,ﬂmﬁﬁfs
Ariington, Virginia 22209
14. MONITORING AGENCY NAME & ADORESS(I{ different hom Connol‘lﬂ_gﬂ_uo) 18. SECURITY CLASS. (of thie report,
Office of Naval Research. DT e e UNCLASSIFIED
Information Systems \’/‘ Y
Arlington, Virginia 22217 ° TSa DECL ASSIFICATION/ DOWNGNADING

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

h

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, Il different from Report) D
f '5/ “ E‘

3 ‘DEC?-A\QBO
18. SUPPLEMENTARY NOTES -

None -~ A :

19. KEY WORDS (Continue on reveras alde Il necessary and Identily by block number) A

Theorem Proving Dependencies Hierarchy 5 :
-S, Automated Deduction Assumptions, L
o) Truth Maiqtenance r\; , Like]jhood . Teectded o
s Backtracking (' / Demonic Invocation) s f
. 9 ABSTRACT (Continue on reverae elde If n Y and identily by Slock ber) .
i //Trut aintenance systemsjhave been used in several recent problem-solving
u_} syst@§ to record justifications for deduced assertions, to track down the !
e assumptions which underlie contradictions when they arise, and to incre-
rora, mentally modify assertional data structures when assumptwns are retracted.
3 | i X TMS algorithm ds—described heré that is substantially different from |
§ 57.:1 previous systems. This algorithm performs deduction in traditional -
| i propositional logic in such a way that the premise set from which deduction —+>
| b s
FOoRM £0ITION OF | NOV 68 IS ORSOLETE 4 ’¢ !
DD taan]‘73 VS/N 0:02-014-6601 | ° UNCLASS|F'ED / / / / (j

SECURITY CLASBIFICATION OF THIS PAGE ('h.n Dote .”'73

[

‘
bu e

,//f.is being done can be easily manipulated. A novel approach is also taken to the role
i ‘ A of a TMS in larger deductive systems. In this approach the TMS performs all

S AR propositional deduction in a uniform manner while the larger system is responsible
‘ ¢ for controlling the instantiation of universally quantified formulae and axiom
schemas.

A

sl o

Massachusetts Institute of Technology

Attificial Intclligence Laboratory

Al Memo No. 551 August 1980

AN OUTLOOK ON TRUTH MAINTENANCE

by
David A. McAllester”

Abstract:

Truth maintenance systems have been used in scveral recent problem solving systems to record
justifications for deduced assertions, to track down the assumptions which underlic contradictions when they
arise. and to incrementally modify assertional data structures when assumptions are retracted. A 'TMS
algorithm is described here that is substantially different from previous systems. This algorithm performs
deduction in traditional propositional logic in such a way that the premise set from which deduction is being
donc can be casily manipulated. A novel approach is also taken to the role of a I'™MS in larger deductive
systems. In this approach the TMS performs all propositional deduction in a uniform manner while the larger
system is responsible for controlling the instantiation of universally quantified formulac and axiom schemas.

Keywords: Thcorem Proving, Automated Deduction, Truth Maintenance, Backiracking, Dependencics,
Assumptions, Likelihood, Demonic Invocation, Hicrarchy

This report describes work done at the Artificial Intelligence Laboratory of the Massachusctts
Institute of Technology. Support for the laboratory's artificial intelligence rescarch is provided in part by the
Advanced Rescarch Projects Agency of the epartment of Defense under Office of Naval Rescarch contract
NO00014-75-C-0043 and in part by National Science Foundation Grant MCS77-04828.

* IBM Fcllow

- 80 12 23 024

Acknowledgments

Therc arc many people who supported and cncouraged this work. Gerald Sussman and Jon Doyle
originally guided me into the arca of truth maintenance and belief revision. Chuck Rich, Jerry Roylance,
Howic Shrobe, and Ken Forbus provided many stimulating discussions.

- ifi -
CONTENTS

1. Introduction 1

2. The TMS 2
2.1 Propositional Constraint Propagation 2
2.2 Justifications 4 .
2.3 Retraction — |]
2.4 Backtracking and Refutation : 7 b

3. Premise Control 10 '
3.1 Assumptions
3.2 L.ikelihood Classes
3.3 Likelihood Assertions

4. Instantiation Control

41 For-All Assertions
42 Taxonomic Hicrarchics: An Example
4.3 Arcas for Further Research
4.3.1 Demonic Invocation
43.2 Spccial Purposc Subsystems

5. Relation to Other Work

Appendix I: The TMS Code

Appendix II: Utility Procedures

Function Index

oW TR A TR T e T

References

L. INTRODUCTION August 1980

1. INTRODUCTION

Recently there has been some interest in dependency structures which can be used in reasoning and
problem solving systems. Such dependency structures can be used to make rcasoning sysiems more
incremental during retraction and backtracking and better able to explain their results [Fikes 75)Stallman &
Sussman 77]{Shrobe 77]. This has given risc to special purpose systems for handling logical dependencics,
and cven the notion of non-monotonic logics, i.c. Jogics in which larger premise sets can have fewer valid
conscquences [Doyle 77[{Reiter 79). 1 have borrowed the term truth maintenance system (TMS) from Jon
Doyle to describe any system with the following four characteristics:

a) It performs some form of propositional deduction from a sct of premises.
b) It maintains justifications and cxplains the resuits of its deductions.
¢) It incrementally updates its beliefs when premises are added or removed.

d) It docs dependency directed backtracking; i.c. when a contradiction arises it uses the
recorded justifications to track down the premises which underlic that contradiction.

Two major points about truth maintenance are made here. First a TMS can be based on deduction
in traditional propositional logic. Sccond, a TMS can be used as an active deductive component of general
deductive systems.

The TMS algorithm described here is based on “propositional constraint propagation™ which was
originally described, in essence, by Davis and Putnam [DJavis & Putnam 60). This technique is related to the
algebraic constraint propagation of Sussman [de Kleer & Sussman 78] and the graph labeling algorithms of
Waltz (Waltz 72}, Scction two describes the details of this technique, and the way in which the basic TMS
functions listed above can be integrated into it.

‘The ability to incrcmentally manipulatc the premisc set allows a great deal of flexibility.
Assumptions can be made which can later be retracted if they are found to support contradictions. Some
basic techniques for controlling assumptions, and for controlling the premisc set in genceral, are described in

chapter three.

The TMS can be used to perform all propositional deduction in a gencral deduction framework. The
primary aspect of general deduction which cannot be performed by a TMS is the instantiation of quantified
formula and axiom schema. The position is taken here that those problems which are of a purcly propositional
naturc can be so'lvcd to such a degrec that the only difficult issucs remaining in automated deduction involve
the control of instantiation.

2 THE'ITMS ' -2- August 1980

2. THE TMS :

The TMS described herc operates on an asscrtional data basc. Traditionally an asscrtional data base
has been cither a simple sct of assertions or a collection of “contexts™ cach of which could be thought of as a
sct of assertions [Hewitt 72] [McDermott 74}, The TMS algorithm developed here operates on a data base in
which asscrtions arc assigned to onc of the three states, "true”, "false™, and “unknown”. It is possible to map
this data base to a simple sct of assertions by first taking the sct of assertions which are “truc” and then adding
the ncgations of the asscrtions which arc "falsc™. ‘Thus the data base can be simultancously viewed as a
traditional set of assertions, and as an assignment of the states "true”, “false”. and "unknown” to
non-traditional assertions.

These different outlooks on the assertional data base can Iead tw some confusion in terminology. For
cxample suppose one wants to assert that FFred is not a fish. One can speak of “adding the premise™ (not (fish
Fred)). But this act of "adding a premise” may actually involve putting the asscrtion (fish Fred) in a "false”
state. The remaindcr of this paper relies on context for the proper interpretation of such terminology.

‘There are four primary functions performed by this TMS. First it performs propusitional deduction
via a deduction technique which is termed here "propositional constraint propagation”. Second it generates

justifications for cach deduced truth value. Next it is capable of incrementally updating the data basc when
premises arc removed. Finally it is capable of dependency directed backtracking. The technique used in ; i
backtracking is casily extended to a refutation mechanism which adds to the deductive power of the TMS,

2.1. Propositional Constraint Propagation

In gencral a constraint propagation system has a sct of "cclls” which can take on valucs, and a set of
"constraints” which constrain thosc values. Whenever a new value follows from the previously determined
values and a sfngle constraint, this value is deduced. In what will be termed "simplc” constraint propagation
these are the only deductions which are made. Constraint propagation terminates when there are no further
deductions which can be made from single constraints, and the sct of constraints is said to be "relaxed”. If the
number of values which can be determined by a single constraint is bounded then this process can take no
longer than lincar time in the number of constraints.

In propositional constraint propagation the assertions in the data basc are viewed as cells or "TMS
nodes” which can take on one of the values "truc” or “false™. All logical rclations (constraints) in the TMS
take the form of disjunctive clauscs such as (v (p . falsc) (q . true)). This constraint says that is impossible for
both P to be truc and Q to be false. Therefore whenever P is true the constraint could be used to deduce that ’
Q must be true. Likewise whenever Q is false the constraint could be used to deduce that P must be false. As
in the casc of general constraint propagation, the ‘'TMS will deduce any truth value which follows from the

{
i
! truth values alrcady present and a single constraist (clause). ‘This process is itcrated until the constraint set is
relaxed. It is possible to add premises and constraints incrementally and the 'TMS has no difficulty performing
; the additional deduction needed to refax the constraint set. !

2. THE'IMS

Table 1. Axioms for Propositional Logic

(v ((orpq) . false) (p . true) (q. true))
(v ((or pq) . true) (p . false))
(v ((or pq) . true) (q . false))

and (v ((andpgq) . true) (p. false) (q. false))
(v((andpgqg) . false) (p . true))
(v ((andpq) . false) (q . true))

-> (v((->pg).false) (p. false) (q. true)) El
(v({(->pq).true) (p. true))
(v((->pg) . true) (g . false))

not (v ((not p) . true) (p .true))
(v ((not p) . false) (p . false))

It is important to note that not all deductions which follow logically from a sct of constraints are
deduced by this algorithm. For example, p follows from the two constraints, (v (p . true) (q . true)) and (v (p .
true) (q . falsc)). However the system can make no deductions from these constraints. Some of the
implications of this obscrvation, and some ways of dealing with such situations arc discusscd in later sections
of this chapter.

‘The TMS performs propositional deduction from a sct of propositional premiscs. ‘These premises

take the form of assignments of truth values to assertions. ‘The constraints in the 'I'MS are derived from basic
axioms of propositional logic. Fach of the logical symbols or, and, ->, and not has an associated axiom set

which can be used to generate clausal constraints. The axioms for cach of these symbols are given in table 1. .
For each assertion in the data base which involves one of the basic logical symbols the axioms for that symbol :
are used to generate the clausal constraints relevant to that asscrtion. In rcading these axioms it is important
to remember that cach clause gives a mcans by which cach term in that clause might be deduced.

To get some feel for the deductive power of a propositional constraint propagator some cxamples
nced be developed. For convenicnce the scenarios use an assert function which takes an asscrtion

Scenario 1. A Deduction Involving or

(assert ‘'(not r))
? (¥oT R)
! (essert ‘(or r 3))
? (OR R S)

(truth °s)

TRUE

DRI v 1t v o P s ¥ s 2% Lo s e e - .

2. THE'TMS -4- August 1980

represented as an s-expression and gives the corresponding ‘TMS node a truth value of "true” as a premise. In
the scenarios things typed by the user will appear in lower case while responses by the system will appear in
upper case.

To understand scenario 1 consider the constraints which are created when the assertions (or ¢ s) and
(not 1) are created. Among the constraints gencrated for (not 1) is the clause (v ((not r) . falsc) (r . false)).
When (not r) is made true r is deduced to be false via this constraint. In gencral the axioms for not guarantce
that an assertion and its ncgation always have opposite truth values. Among the constraints generated for (or
r 5) is the clause {v ({(or r s) . False) (r . true) (s . true)). When (or 1 s) is madc truc this clausc is used to deduce
that s must be true.

In general there are three assertions which are relevant o an application of onc of the logical
symbols and, or, and ->. ‘The first assertion is the application itself, such as (or r s). ‘The sccond two assertions
arc the arguments in this assertion, such as r and s. The propositional axioms guarantee that whenever a truth
valuc of one of these assertions can be deduced from truth values assigned to the other two, that deduction is
made by the TMS. Scenario 2 is anuther example of the type of deduction which is carried out by the TMS.

2.2. Justifications

Whenever a deduction is made a justification for the deduced value is constructed. Every deduction
madc by the TMS invol»'cs only a single clause, along with the truth values of asscrtions in that clausc. Thus
the clausc involved in a deduction carries all the information needed for a justification. ‘Therefore in the TMS
a justification for a deduced truth value is simply a pointer to the clause which was used to deduce that value.

Every deduced truth value can be associated with a set of supporting truth values via its justification.
If any of these values were deduced by the system (i.c. they are not premiscs) then they will in turn have
supporting values. By searching down such support structures it is always possible to find the set of premises
from which any deduced valuc was derived. A guery function, why, has been defined to give the set of
supporting valucs for any deduced truth value. Scenario 3 gives an example of the use of why and figure 1
diagrams the support structurc involved. The function why can take a numecric argument which refers to the

Scenario 2. A Deduction lnvolving ->
{(assert '(-> r 3))
(->RS)

(assert '(-> s t))
(->ST)

(essert ‘(not t))
(NO7 T)

(truth 'r)
FALSE

- Cemmmmem s

2 THE ITMS ' -5- August 1980

Scenario 3. An example of the use of why

(assert '(-> r 3))
(-> R S)

(assert '(-> s t))
(->S7T)

(assert '(not t))
(NOT T)

(why 'r)

((R IS FALSE FROM)
(1 (-> R S) IS TRUE)
(2 S IS FALSE))

(why 2)

((S IS FALSE FROM)
(1 (-> S T) IS TRUE)
(2 T IS FALSE))

(why 2)
((T IS FALSE FROM)
(1 (NOT T) IS TRUE))

(WHY 1)
((NOT T) IS TRUE AS A PREMISE)

Fig. 1. The Support Structure for Scenario 3

truth ! ruth _ ! r !
R s > T |_truth
justitication -#-} justitication | justitication
clause clause
{>RS) [false (3ST) [raise clause
(NOT T} | talse
R talse S faise
T false
S true T true
truth ¢ truth t truth t
->RS) (BY-3 1] TT i
justitication / justification |/ (NOTT) justitication |/

2 THETMS -6 August 1980

assertion which was associated with that number in the last explanation given.

Premises are distinguished in the system as truth values with no justification. At any time the user of
the TMS may add any truth value as a premisc other than the opposite of a truth value already present as a
premise. If the added premisc is a truth value which was alrcady deduced by the system then the justification
for the deduced value is simply removed. If the added truth value is the opposite of one already deduced by
the system then the deduced value is retracted and the opposite value is assigned. The details of how this is
donc and how the resulting contradiction is handled are discussed in the next two sections.

It is important that support structures be “well founded™. 'That is to say that no deduced truth value
can depend on itself. For the deduction process as defined so far this is guaranteed since justifications are
determined at the instant at which a value is deduced and no value in the systemn yet depends on the deduced
value. However some care nced be taken during incremental retraction to see that supports remain well

founded. This will be discussed in the next section.
2.3. Retraction

Onc of the fundamental operations of truth maintenance is incrementally updating the asscrtional
data basc when premiscs are retracted. This should be done in such a way that all deductions are madce which
would have been made if the sysiem had started with the new premise set, and that every deduced truth value
{every one which is not a premise) has a well founded support structure. There are two stages in the retraction
process. First all deduced truth values which depended on the removed premise are removed. This is done by
checking all clauses which contain any assertion whose truth value was retracted to see if it now invalidly
supports some other value. If it does then that valuc is recursively retracted. The second phase of the
retraction process involves checking all asscrtions which had truth valucs retracted to see if some value can be
deduced for them in some other way. Because all deduction is done in an cnvironment in which all
justifications are valid and well founded, the justifications resulting from any deduction must be valid and
well founded.

Retraction is also involved when the user adds a premise which the system has alrcady deduced to
be false; i.c. the user wishes to assign a truth valuc to an assertion as a premise but the system has already
deduced the opposite value for that asscrtion. In this casc phasc one of the retraction process is applicd to the
deduced truth value so that the deduced value is removed along with all of its consequences. Then the truth
value being given that asscrtion as a premisc is added. Finally phase two of the retraction process is applied to
perform any deduction which can done via standard propositional constraint propagation. Of course the data
basc will then be in a state of contradiction, which is discussed in the next section.

s i P 00 - N ot Bl " —— " "

2. THE 'TMS -7- August 1980

2.4. Backtracking and Refutation

The term “contradiction” will be used here to refer to a clause in the TMS all of whose terms are
falsc. For example the clause (v (p . false) (q . true)) would be a contradiction in any situation in which p was
true and q was false. Contradictions can come into existence at any time during deduction or the addition of
premises. ‘The premise set underlying a contradiction is the union of the premise sets for the truth values
dircctly involved. ‘To ensure that backtracking docs not interfere with deduction or retraction, all processing
of contradictions is donc outside any of these processes. When contradictions arisc the system asks the user
(or the system using the TMS) to choose one of the premises underlying the contradiction for retraction. 'This
process has been termed "dependency directed backiracking” [Stallman & Sussman 77] and a simple example
is given in scenario 4. '

When a premise which underlies a contradiction is retracted it is important that its ncgation be
deduced to prevent a re-occurrence of the same contradiction at a later time. This can sometimes be done by
the propuositional constraint propagation algorithm alrcady discussed. Howcever there are cases where this is
not so. For example consider what happens in scenario 5. The assertion ¢ logically follows from the asscrtions
> a¢). > bc), and (or a b). but the system is incapable of deducing this. When (not ¢) is asscrted the system
deduces that both a and b must be false which lcads to the clause (v ((or a b) . false) (a . true) (b . truc))
becoming a contradiction (a clause involving one of the the implications could just as casily become a
contradiction if deduction was done in a different order). The asscrtion (not ¢) is onc of the premises

underlying this contradiction. Without some additional mechanism howcever the system is incapable of

Scenario 4. A Simple Example of Backtracking

(assert ‘(or r s))
(OR R §)

(assert '(not r))
(NOT R)

(assert ‘(not s))
((THERE IS A CONTRADICTION FROM
((OR R S) BEING TRUE)
(R BEING FALSE)
(S BEING FALSE))
(THE UNDERLYING PREMISES ARE
(1 (OR R S) IS TRUE)
(2 (NOT R) IS TRUE)
(3 (NOT S) IS TRUE))
(WHICH PREMISE SHOULD BE RETRACTED »)) 3

(why 's3)

(S 1S TRUE FROM

(1 (OR R S) IS TRUE)
(2 R IS false))

CLt D A Bk #L T A

2. THE ITMS ‘ -8- August 1980

deducing that (not ¢) must be false when the truth of (not ¢) is retracted.
Onc simple solution is to add a clausce which contains the negations of all the premises underlying
the contradiction. In the casc of scenario § this clause is:

(v ((or a b) . false) ((-> a c). false) ((-> b ¢) . falsc) ((not ¢) . false))

Any such gencrated clause is guaranteed to be a logical tautology becausc all of the involved premises lead to
a contradiction given the clauses already in the system, which arce themselves all logical tautologies. Once
such a clause is addced it can be used to deduce the negation of any one of the premiscs whenever all the
others are believed. Thus when a single premise is retracted its negation is guaranteed to be deducible by the
system.,

Actually the TMS uscs a more complex algorithm which performs local clause resolution. This

Scenario 5. Another example of backtracking

(assert '(-> a c))
(> A0C)

{(assert '(-> b ¢))
(-> B C)

(assert '(or a b))
{(OR A B)

(why ‘c)
(1 DONT KNOW WHETHER C IS TRUE OR FALSE)

(assert '(not c))
((THERE IS A CONTRADICTION FROM
(A IS FALSE)
(B IS FALSE)
((OR A B) IS TRUE))
(THE UNDERLYING PREMISES ARE
(1 (-> A C) IS TRUE)
(2 (-> 8 C) IS TRUE)
(3 (OR A B) IS TRUE)
(4 (NOT C) 1S TRUE))
(WHICH PREMISE SHOULD BE RETRACTED >)) 4

(why ‘c)
(C IS TRUE FROM
(1 (NOT C) IS FALSE))

(why 1)

((NOT C) 1S FALSE FROM
(1 (-> A C) IS TRUE)
(2 (-> B C) IS TRUE)
(3 (OR A B) IS TRUE))

2 THEITMS -9 August 1980

Scenario 6. An Fxample of Refutation

{assert '(-> a b))
(-> A B8)

(assert '(-> b ¢c))
(->8C)

{(why '(-> a ¢))
{1 DONT KNOW WHETHER (-> A C) IS TRUE OR FALSE)

(try-to-show ‘(-> a ¢))
T

(why *(~> a ¢))

({-> A C) IS TRUE FROM
(1 (~> A B) IS TRUE)
(2 (-> B C) IS TRUE))

produces more local constraints which are deductively more powerful and give shorter, more structured
justifications when they are used in deductions. However the details of this more sophisticated procedure are
irrclevant to the current discussion and the interested reader is referred to appendix one for the Lisp code
which performs backtracking in the implemeated TMS.

The backtracking mechanism can be used in a refutation technigue which increascs the deductive
power of the system. In refutation the system attempts to deducce a specific truth value for an assertion by first
adding the negation of that valuc as a premisc. If no contradiction ariscs then the attempted deduction fails
and the added truth value is removed. If a contradiction does arise then the added value must underlie it and
the system deduces the negation of this value in the standard backtracking manncr. Thus the desired truth
value gets deduced. Scenario 6 gives an cxample of the use of a try-to-show function which invokes the
refutation mechanism.

i

3. PREMISE CONTROL -10-

3. PREMISE CONTROL

The TMS can be thought of as an instrument which allows one 1o view the conscquences of a
premise sct. Being similar to other instruments of examination, the TMS is uscful not only in examining
given premise scis, but also in determining those premises which are of interest. This Chapter investigates
somc¢ ways in which thc TMS can be used to feed back information from the asscrtional data base in
manipulating the premisc set under examination.

A premise controller can be used to automate some manipulations of the premise set. This premise
controller can have data structurcs which are completely independent of the assertional data base. For
example the premise controtler might associate ikclihoods with cach potential premise. The user could then
manipulate these likelihoods Icaving the actual premisc control up to the controlier. The first two sections of
this chapter investigate some methods for doing this type of automatic premisce control,

The premise controller can also make usc of the assertional data basc when choosing premises. For
example supposc that the 'TMS has deduced that the assertion (taller Bill John) is truc, which is interpreted as
saying that Bill is taller than John. In this casc it might be uscful to assume that Bill is heavier than John. The
last section of this chapter describes a technique for having this kind of premise control done automatically.

3.1. Assumptions

A simple premise controller can be constructed by making a distinction between solid facts and
assumptions. In this system the user would specify a sct of solid facts and a set of assumptions. The premise
controller would then put both in the premise set. If contradictions arisc then the premise controller will
always retract an assumption before retracting a solid fact. If there is more than once assumption underlying a
contradiction then the user is asked to choose one for retraction. Similarly if a contradiction arises which has
no underlying assumptions then the user must choose some "solid fact” for retraction.

An cxample of the use of assumptions in premisc control is given in Scenario 7. In this scenario, and
all those that follow, the user is interacting with a premise controller which in turn dcals directly with the
‘TMS. Thus the assert function tells the premise controller that the given assertion is a solid fact, and the
assume function tells it that the given assertion is an assumption.

In scenario 7 the premise controller is given two assumptions. First r is assumed, which leads to a
deduction that t is falsc. Then t is assumed and the premise controller makes t a premisc. This causes the
clause which justificd t being falsc to become a contradiction. When this contradiction occurs only the
assumptions undcrlying the contradiction are presented to the user, thus the two implications, (-> r s) and (->
s (not t)). are not considered for retraction. When the assumption r is retracted its ncgation is automatically
deduced.

Another cxample of premise control via assumptions is given in scenario 8. In this scenario three
assumptions arc made. Logical constraints arc placed on these assumptions such that any onc of them can be
truc, but any two of them lcad to a contradiction. When r and s arc both assumed a contradiction ariscs and

NI

i
o
H
¢
H
a
2
4
a

3. PREMISE CONTROL -11- August 1980

Scenario 7. An Example of Premise Control with Assumptions

(assert '(-> r s))
(-> R S)

(assert ‘(-> s (not t)))
(-> S (NOT T))

(assume 'r)
4

(why 't)
(T IS FALSE FROM
(1 (NOT T) IS TRUE))

(assume °t)
({CONTRADICTION FROM
(T IS TRUE)
((NOT T) IS TRUE))
(UNDERLYING ASSUMPTIONS ARE
{1 T IS TRUE)
(2 R IS TRUE))
(WHICH ASSUMPTION SHOULD BE RETRACTED)) 2

(why r)

(R IS FALSE FROM

(1 (~> R S) IS TRUE)
(2 S IS FALSE))

the user makes a choice between these two assumptions, leading to a retraction of r. When t is assumed the
user must then choose between t and s, leading to a retraction of s. At this point the user has not expressed
any preference between r and t, both of which were given to the premise controller as assumptions. So the
premisc controller reinstates r as a premise and forces this choice to be made. In gencral the premise
controller never makes an arbitrary choice between assumptions.

3.2. Likelihood Classes

A generalization of the assumption approach to premise controt involves placing potential premises
in likclihood classes. The assumption approach can be viewed as a special case of this in which there are two
likelihood classes, one for known facts and onc for assumptions. When contradictions arise in the gencral
likclihood approach, less likely assumptions are always preferred for retraction. The user need only be
consulted when there are several premises which tic for being the least likely premises underlying a
contradiction. Again the premisc controller is very carcful not to make arbitrary choices between premiscs in

the same class.
An cxample of a casc in which it might be desirable to have more than two premise classes involves a
numerical approximately cqual relation, ~. Such a relation is not truly transitive, i.c. (~ a b) and (~ b c) docs

3. PREMISE CONTROL -12-

Scenario 8. A More Complex Fxample

(assert '(not (and r s)))
(NOT (AND R S))

(assort ‘(not (and s t)))
(NOT (AND S T))

(assert “(not (and r t)))
(NOT (AND R T))

{assume 'r)
R

(assume °3)
((CONTRADICTION FROM
(AND R S) IS FALSE)
(S IS TRUE)
& (R IS TRUE))
(THE UNDERLYING ASSUMPTIONS ARE
(1 S IS TRUE)
(2 R IS TRUE))
(WHICH SHOULD BE RETRACTED)) 2

(assume 't)
((CONTRADICTION FROM
((AND S T) IS FALSE)
(S 1S TRUE)
(T IS TRUE))
(TRE UMDERLYING ASSUMPTIONS ARE
(1S IS TRUE)
(2 T 1S TRUE))
(WHICH SHOULD BE RETRACTED)) 1

((CONTRADICTION FROM
((AND R T) IS FALSE)
(R IS TRUE)
(T IS TRUE))
(THE UNDERLYING ASSUMPTIONS ARE
(1 R IS TRUE)
(2 T 1S TRUE))
(WHICN SHOULD BE RETRACTED)) 1

August 1980

not necessarily imply that (~ a c); otherwise onc could prove that things of arbitrarily differing size were
roughly cqual. However onc might want to consider this transitivity o be very likely. One might also have
other assumptions in the systems, say about transistor states which arc much less certain. Thus one would
want at least three likelihood classes used in premise control, one for known facts, one for facts derived from
the transitivity of the roughly cqual relation, and onc for loss certain assumptions. ‘The code for a promise
controfler of this type is presented in appendix two. '

3. PREMISE CONTROL -13- August 1980

3.3. Likelihood Assertions

In addition to retracting premiscs which lead to a contradiction, a premise controller should be able
to use deductions made by the T™S to do more positive types of premise control. For example, if it has been
deduced that one person is taller than another, onc might want to assume that he is also hcavier. Or if onc has
deduced that some animal is a bird, onc might want to assume that it can fly. This type of premise control can
be done with likelihood assertions.

Assuming that the a gencral likelihood class approach is taken to premise control, one can imagine
likclihood assertions of the form: (very-likely p). which is intcnded to mean that the assertion p is very likcly to
be true. ‘There could be a whole range of such likclihood “predicates” such as somewhat-likely, likely,
very-likely. ctc. Of course it remains to be shown how a system is capable of using (or "understanding™) such
assertions.

Onc way of using such asscrtions is Lo have the premise controller continually monitor the data base
and use them in placing potential premises in likelihood classes. However if the system has assumed that
some animal can fly it might be nice 1o know why this assumption was made. While it would be possible to
place justification machinery in the premise controller there is a much simpler solution. For cach assertion of
the form (likely p) the system automatically crcates the assertion (-> (likely p) p). This implication is then
considered to be a “likely” premisc by the premise controller. Similar implications would be created for other
likelihood predicates and given corresponding status in the premise controller. In this way if the assertion
(likely p) is ever deduced to be true, the assertion p will also become true. ‘The support for p will involve the
likclihood assertion and it will therefore be clear why p is believed. However if the deduction of p ever keads
1o a contradiction then the assumption (-> (likely p) p) can be retracted. Scenario 9 gives an example of the
usc of a likclihood assertion.

Scenario 9. A usc of Likelihood Assertions

(assert ‘(-> (bird fred) (Vikely (flys fred))))
{-> (BIRD FRED) (LIKELY {FLYS FRED)))

(assert ‘'(bird fred))
(BIRD FRED)

(why "(flys fred))

((FLYS FRED) IS TRUE FROM

(1 (-> (LIKELY (FLYS FRED)) (FLYS FRED)) IS TRUE)
(2 (LIKELY (FLYS FRED)) 1S TRUE))

(why 2)

((LIKELY (FLYS FRED)) IS TRUE FROM
(1 (-> (BIRD FRED) (LIKELY (FLYS FRED))) IS TRUE)
(2 (BIRD FRED) IS TRUE))

4. INSTANTIATION CONTROL

4. INSTANTIATION CONTROL

It is well known that automated deduction and theorem proving systems are subject to explosive
computations. However the TMS described in the previous sections seems free of this problem. While it is
possible to make the premise controller do a great deal of backtracking (cxponential in the number of
backtrackable assumptions), in practice this is not important because the number of assumptions is usually
small and they do not interact in complex manners. The difference between the TMS and more general
deductive systems is that the TMS deals with propositional logic only. All of the difficult problems in
automated deduction involve instantiation of quantified furmulac and axiom schemas.

From the point of view taken here instantiation and deduction are separate processes. Deduction is
the process of assigning truth values to assertions based on other truth values alrcady in the system. This can
be done entircly by the TMS. Instantiation can be though of as generating propositional formulae upon
which the 'TMS can opcrate. This outlook on deduction leads to novel control strategies.

4.1. For-All Assertions

Quantificd knowledge can be represented in for-all assertions. Scenario 10 gives an cxample of the
usc of such asscrtions. In this scenario the assertion (for-all {(dog !x) (mammal !x)) represents the statement
that all dogs arc mammals. In general a for-all assertion has two parts. The first is an "anteccdent assertion”
such as (dog 'x) in the example, and is similar to a trigger pattern in a PLLANNER demon. Symbols which

begin with the character "!" arc treated as variables which can match any s-cxpression. The sccond part of a
for-all assertion is a consequent assertion, instances of which follow from the for-all assertion and
corresponding instances of the antccedent assertion.

For deductions to bc made from the asscrtion (for-all (dog 'x) (mammal !x)) constraints must be
placed in the TMS which involve this assertion. TMS constraints for asscrtions involving the basic logical
connectives are derived from axioms for those conncctives. Similarly constraints involving for-all assertions
arc derived from implicit axioms for for-all. 'The following constraint is an instance of these axioms. It says
that the above for-all asscrtion along with the asscrtion (dog Fred) implics the asscrtion (mammal Fred).

(v ((for-a)1 (dog !x) (mammal !x)) . false)

((dog Fred) . false)
((mammal Fred) . true))

It is clear that it would be impossible to gencrate all instances of the axioms for for-all asscrtions
whenever such an assertion is created in the data base. Therefore some more sophisticated control tcchnique
is required for this instantiation process. When a for-all asscrtion is created a demon is constructed which
invoked every time an asscrtion that matches the antecedent patiern is created in the data base. Fach time this
demon is invoked it uses the variable binding generated by the triggering asscrtion to create a corresponding
instance of the consequent assertion. ‘Then it adds a constraint, similar to the onc above, which statcs that the
for-all assertion along with this instance of the antecedent asscrtion implics the instance of the conscquent

4 »

4. INSTANTIATION CONTROL -15- August 1980

Scenario 10. A use of for-all i

(assert '(for-all (dog Ix) (mammal ix))) 1
{(FOR-ALL (DOG !X) (MAMMAL 1X))

(assert '(dog fred))
(0OG FRED)

(why ‘'(mammal fred))

((MAMMAL FRED) IS TRUE FROM

(1 (FOR-ALL (DOG !X) (MAMMAL [X)) IS TRUE)
(2 (DOG FRED) IS TRUE))

assertion. It is important to keep in mind that the triggering condition is the creation of an assertion not the
assignment of a true truth value to that assertion. Thus the above constraint could have been generated even if
the assertion {dog fred) was not known to be true. In this case the constraint could be used to deduce that this

assertion is in fact false.

4.2. Taxonomic Hierarchies: An Example

A system for rcasoning about taxonomic hierarchies will be developed in this section. Each

taxonomic class is represented by a predicate. The taxonomic hicrarchy can.be represented by assertions of

the form:

(for-all (cat {x) (mammal 1x))
(for-al1 (dog I!x) (mammal ix))
{for-all (dog 1x) (not (cat 1x)))

(for-a11 (cat !x) (not (dog !x)))

Figure 2 shows a taxonomic hicrarchy. A set of assertions similar to the above assertions concerning
the predicate mammal arc asserted for cach non-terminal predicate in the hicrarchical tree. Scenario 11 gives
some sample deductions the system is capable of making from these asscrtions. When the assertion (mouse
fred) is crcated the asscrtion (rodent fred) is also created and a constraint is installed which says that the
assertion that all mice arc rodents along with the assertion that Fred is a mouse imply the assertion that Fred
is a rodent. The creation of the assertion (rodent fred) in turn leads to the creation of other constraints and
assertions until the top of the hierarchy is rcached. Now when (rodent fred) becomes true, the TMS

[automatically deduces that fred is a member of every class supcrior to rodent in the hicrarchy.

F Now consider what the system docs in response to the form (why ‘(ladybug fred)). Since the
| assertion (ladybug fred) did not exist previousty in the system the why function first creates this assertion. This
creation results in the creation of further assertions and logical constraints. ‘These newly created constraints
interact with the previous constraints at the level of vertebrate and arthropod. Sincc it was asscrted in

4. INSFANTIATION CONTROL <16 August 1980

Fig. 2. A Simple Taxonomic Hicrarchy

asnimal
4’::31::::i /::::I:::\\
mamma| fish crustacean Inspct
rodent primate butterfly besetie
mouse rabbit June bug ladybug

Scenario 11. Some Deductions Involving the Taxonomic Hierarchy

(assert '(mouse fred))
{MOUSE FRED)

(why ‘(vertebrate fred))

((VERTEBRATE FRED) IS TRUE FROM

(1 (FOR-ALL (MAMMAL {X) (VERTEBRATE 1X)) IS TRUE)
(2 (MAMMAL FRED) IS TRUE))

(why '(ladybug fred))

((LADYBUG FRED) IS FALSE FROM

(1 (FOR-ALL (LADYBUG !X) (BEETLE 1X)) IS TRUE)
(2 (BEETLE FRED) IS FALSE))

constructing the hicrarchy that no vertcbrates are arthropods, the system had alrcady deduced that the

assertion (arthropod fred) was false. This lcads to the deduction that Fred is not an inscct, and therefore not a

beetle, and therefore not a ladybug. -~
The time it takes it takes to do the types of instantiations and deductions exemplified in scenario 11 h

is proportional to the depth of the hicrarchy which is usually proportional to the log of the number of classes
involved. The interesting thing about the above deductions however is not the cfficient computation time

4. INSTANTIATION CONTROL -17- August 1980

involved but instcad the simplicity of the control structure used in achicving it. Normally to achieve
comparable cfficiency one would have 10 use both forward chaining and backward chaining control structures
[Moore 75]. Here a single method for controlling instantiation (as opposed o deduction) fully achieves the
desired efficiency.

4.3. Areas for Further Research

‘The instantiation control techniques which have been discussed so far are only a beginning. Not all
domains in deduction lend themselves to so simple a solution as do taxonomic hicrarchics. ‘The simple
statement that the mother of any person is a person Ieads to infinite instantiation if a standard for-all asscrtion
is used. ‘This section gives some directions for rescarch into other instantiation control techniques. The major
point here does not concern specific mechanisms for controlling instantiation, but rather that control of
deduction in general should be thought of as control of instantiation.

4.3.1 DEMONIC INVOCATION

In controlling the instantiation of quantificd knowledge onc would like a convenient way of
specifying gencral conditions under which instantiation is to take place. The axioms for the basic
propositional logical operators get instantiated whenever an assertion using onc of these opcrators is created
in the data basc. This type of demonic invocation will be called "reference invocation™. The following is a
demon specification utilizing reference invocation which might be used to control the knowledge that the
mother of any person is a person:

(notice ((assertion-reference (person ix))

(term-reference (mother !x)))
(install-constraint '(-> (and (person {x)
(for-al1l y
(-> (person y)

(person (mother y)))))
(person (mother tx}))))

Demon specifications of the above form have two parts. First is a sct of conditions which must be
met for the demon to fire. The second is a body of Lisp code which defines the action taken by the demon
when it fires. The trigger conditions of the above demon are both reference conditions which are met
whenever a term or assertion matching the given pattern is referenced. When a demon is triggered the
variables in the trigger patterns arc bound to s-cxpressions representing terms and assertions. ‘These bindings
are then used to replace all occurrences of the variables in the body with the corresponding s-cxpressions
before the body is evaluated. In the above example install-constraint is uscd instcad of assert because the
implication being asserted is really a logical tautology and therefore only a TMS clause cquivalent to the
implication need be created (no node is generated to represent the implication itsclf).

Other types of trigger conditions arce conceivable. The simplest would trigger whenever assertions of

a certain form became true (or false). Asscrtions and tcrms might also be assigned “interestingness”. 1Demons

4. INSTANTIATION CONTROL - 18- August 1980

could then trigger when assertions or terms of certain forms are “interesting™. Such control states assigned to
asscrtions and terms would be closcly related to “control asscrtions” which have been used in some recent
work with pattern dirccted invocation systems [de Klcer ct. al. 77] [Shrobe 79]. However the use of such
techniques for instantiation control (as opposed to deduction control) is stifl largely unexplored.

4.3.2 SPECIAL PURPOSE SUBSYSTEMS

An important aspect of any automated deduction system is the case with which special purpose
subsystems can be incorporated. For cxample onc almost certainly wants some special purpose algorithms for
dcaling with cqualitics [Nclson & Oppen 79) [McAllester 80]. In the present context such algorithms can be
viewed as controlling the instantiation of the substitution axioms for cquality, gencrating new terms and
cquating them with other terms in the system. A full discussion of the ways cquality can be handled is beyond
the scope of this work, but it is important to note that special purposc' procedures seem a better option than
any attempt to handle it entirely through demonic mechanisms.

Another example of an arca in which special purposc subsystems would be desirable is algebraic
simplification. There arc good algorithms for doing symbolic simplification of algebraic expressions and any
reasoning system which must manipulatc such cxpressions should be able to use these algorithms (McAllester
80]. The feasibility of incorporating arbitrary special purpose deduction algorithms and decision procedures is
only beginning to be explored.

t 5. RELATION TO OTHER WORK -19- August 1980

5. RELATION TO OTHER WORK

‘The earliest predecessor to the system described here is probably the Davis-Putnam algorithm for
determining the satisfiability of sentences in first order predicate calculus [Davis & Putnam 60]. 'The feature of
their algorithm which resembles the TMS is their technique for determining satisfiability of purely
propositional sentences. Their method translated the propositional sentence to a set of disjunctive clauses and
then performed "propositional constraint propagation” on those clauses much as does the TMS (but they did
not call it that), Propositional constraint propagation can also be scen to be very similar to unit clause
resolution (resolving first with clauses which contain only a single term). However it is not really appropriate
o comparc the TMS 10 any full fledged resolution system since the TMS docs not deal with variables (ie.
quantificd formula).

‘These carly systems however did not perform the basic 'TMS functions of justification maintenance,

incremental retraction, and dependency directed backtracking. The carliest attempt to handle incremental

retraction probably dates back to the "add" and “delete” lists in the STRIPS language {likes 71). and
PLLANNER demons which triggered on the removal of assertions [Hewitt 72] [Sussman 71} [McDermou 74).
Later a dependency based mechanism was developed by Richard Fikes for reasoning about state transitions
[Fikes 75). A more sophisticated dependency directed retraction mechanism was later developed by Stallman
and Sussman for usc in an clectrical circuit analysis system [Stallman & Sussman 77). Their system coutd

make assumptions about transistor states, and when a contradiction was derived, the system uses dependency

dirccted backtracking to track down the particular underlying assumptions.
‘The first domain independent system which performed all of the basic truth maintenance functions
was developed by Jon Doyle [Doyle 78). Doyle’s system used “non-monotonic” dependencies which justify a
node being “in" by the fact that some other node is "out™. Such dependencies arc typically used to make
h assumptions. For example one might assume A by justifying A with the fact that (not A) is out. Thus if (not A)
| ever becomes in, the justification for A will no longer be valid and A will become out. This leads to problems
however if the system is able to prove (not A) from the assumption of A. First (not A) comcs in forcing A out.
But because (not A) depends on A this in turn causes (not A) to become out. which, via the non-monotonic
dependency, leads to A becoming in, which leads to (not A) becoming in, ad infinitum. While there may be

ways to fix this problem, it scems hard to motivate the introduction of non-monotonic mechanisms which lead
to unnccessary complications.

Another problem with non-monotonic systems is their obscure scmantics. Attempts to formalize
"non-monotonic logics” are plagued by "unsatisfiable” situations similar to the infinite computation
described above [McDermott 78). While it may be possible to debug these problems, the fundamental
motivation behind non-monotonic justifications is suspect. Certainly one cannot argue that an assumption is
madc because one cannot prove its negation. At any time there is an infinite number of assertions which the
system can not prove to be false, but onc would certainly not want to assume all these things. Thercfore a
non-monotonic justification does not capture the true reason for making an assumption. It might capture what
the system should do if it could prove the negation of an assumption, but this is a backtracking issuc and

5. RELATION TO OTHER WORK -0- August 1980

should not be represented as a justification.

In the truth maintenance system described in this paper as much as possible is donc in a traditional
framework. The problem with non-monotonic logics is that they bring in non-traditional formalisms too
carly, muddying deduction, justifications, and backtracking. The aspect of truth maintenance which cannot be
formalized in a traditional framework is premise control, which has only just begun to be explored. foofoo

i T

6. APPENDIX I: THE TMS CODE -2- August 1980

6. APPENDIX I: THE TMS CODE
6.1. The User Interface

These functions interact with the the premise controlier. ‘The premise controller works on a priority
class scheme which can be initialized to have any nuinber of priority classes, which are assigned consccutive
intcgers from the least t the most certain, The user level functions given here work with three priority classes,
numbered 1 through 3. The functions assert and assume put assertions in the most certain and least certain

classes respectively. ‘The middle class is accessed via very-likely assertions, which are documented below.

(prmcon-init 1 3)

(defun assert (assertion)
(set-default (referenced-node assertion) 'true 3)
assertion)

(defun assume (assertion)
(set-default (referenced-node assertion) 'true 1)
assertion)

(defun retract (assertion)
(remove-default (referenced-node assertion}))

‘The assertions are placed in a hash table which is used to insure that no two 'TMS nodces have the

same assertion.

(declare (special *assertion-table®))
(setq *assertion-table®* (make-array nil ‘art-q 4000))

(aefun index (form)
{remainder (hash form) 4000))

(defun referenced-node (assertion)
(1et ((ass (virt-assoc assertion
(ar-1 *assertion-table® (index assertion)))))
(if (cdr ass)

(cdr ass)

(let ((node (make-tms-node)))
(setf (cdr ass) node)
(setf (assertion node) assertion)
(instantiate node assertion)
node))))

(defmacro in-funs (symbol)
*(get ,symbol 'in-funs))

(defun instantiate (node assertion)
(if (and (1istp assertion) (symbolp (car assertion)))
(mapc 'funcal) (in-funs (car assertion))
(circular-list node)
(circular-list assertion))))

. —

6. APPENDIX I: YHE TMS CODE -22- August 1980

‘These functions instantiate the basic axioms of propositional logic in the TMS.

(defun ->instance (node assertion)
{let ((n1 (referenced-node {cadr assertion)))
(n2 (referenced-node (caddr assertion))))

(add-clause (list (cons node ‘false)
(cons n1 'false)
(cons n2 ‘true)))

{add-clause (list (cons node ’true) (cons nl1 ‘true)))

(add-clause (list (cons node 'true) (cons n2 'false)))))

T TP SUUT VI NS

(addf '->instance (in-funs '->))

{(defun or-instance (node assertion)
(let ({nt (referenced-node (cadr assertion)))
(n2 (referenced-node (caddr assertion))}))
(add-clause (list (cons node 'false)
(cons n1 ‘'true)]
l (cons n2 'true)))
(add-clause (list (cons node 'true) (cons nl 'false)))
(add-clause (1ist (cons node 'true) (cons n2 'false)))))

(addf ‘or-instance (in-funs ‘or)) {

l (defun and-instance (node assertion) :
(et ((n1 (referenced-node (cadr assertion))) ‘
(n2 (referenced-node (caddr assertion)))) ‘
{add-clause (1ist (cons node ‘true)
(cons n1 'false)
(cons n2 ‘false)))
(add-clause {1ist (cons node °'false) (cons nl 'true)))
(ado-clause (1ist (cons node 'false) (cons n2 'true)))))

(addf ‘and-instance (in-funs 'aand))
(defun not-instance (node assertion)
{let ({n1 (referenced-node (cadr assertion))))
(add-clause (list (cons node 'true) (cons nl 'true)))
(add-clause (list (cons node 'false) (cons a1l 'false)))))

(addf ‘'not-instance (in-funs ‘'not))

These functions interface likelihood assertions with the premise controller.
(defun 1ikely-instance (node assertion)
(assume '(-> ,assertion ,(cadr assertion))))
(addf 'likely-instance (in-funs 'likely))
(defun very-likely-instance (node assertion)

(18t ((n1 (referenced-node '(-> ,assertion ,(cadr assertion)))))
(set-default nl "true 2)))

(addf ‘very-likely-instance (in-funs ‘'very-likely))

6. APPENDIX I: THE TMS CODE -3- August 1980

(defun try-to-show (assertion)
(et ((node (refarencod node assortion)))
(refute (cons node 'false))
(eq (truth node) 'true)))

(defun why (item)
(if (and (numberp item) (= item 0))
(pop-query)
(et ((node (if (numberp item)
(answer item)
(referenced-node item))))
(cond ((unknown? node)
‘(1 dont know whether or not ,(assertion node) is true))
((null (support node))
"(.(assertion node) is ,(truth node) as
.@(car (assoc (certainty node) '((1 a likely)
(2 a very-likely)
(3 an asserted))))
premise))
(t (push-query (cons ‘(,(assertion node) is ,(truth node) from)
(fmapcar ‘(lambda (term)
(if (not (eq (car term) node)) !
(cons “(.(assertion (car term))
is
.(truth (car term)))
(car term))))
(clause-Tist (support node))))))))))

Tkt S S LI i T AN it

6. APPENDIX L: THE TMS CODE. ‘Y-

6.2. The TMS

(declare (special ®*contra-1ist® ®*removed-list® *noticers®
*premise-selector® *premise-checker®))

(defun tms-init (prem-selector prem-checker)
(setq *premise-selector® prem-selsctor)
(setq *premise-checker* prem-checker)
(setq *contra-list® nil)

‘(tms-ready))

(defstruct (tms-node)
assertion
(truth ‘unknown)
support
true-noticers
false-noticers
unknown-noticers
neg-clauses
pos-clauses
external-properties)

(defmacro opposite (value)
"(if (eq ,value 'true) 'false 'true))

(defmacro clauses (node value)
'(if (eq ,value 'true)
(pos-clauses ,node)
(neg-crauses ,node)))

(defmacro op-clauses (node value)
*{if (eq .value 'true)
(neg-clauses ,node)
(pos-clauses ,node)))

(defmacro noticers (node value)
*(cond ((eq ,value 'true)
(true-noticers ,node))
({(eq .value ‘'false)
(false-noticers ,node))
(t (unknown-noticers ,node))))

(defmacro unknown? (node)
‘(eq (truth ,node) ‘unknown))

(defmac premise? (node)
(and (not (unknown? node)) (null (support node))))

(defmac true-term? (term)
(eq (truth (car term)) (cdr term)))

(defmac false-term? (term)
(eq (truth (car term)) (opposite (cdr term))))

(defmacro unknown-term? (term)
‘(unknown? (car ,term)))

(defmacro op-term (term)
'(cons (car ,term) (opposite (cdr ,term))))

August 1980

6. APPENDIX I THE 'TMS CODE -25- August 1980

(defmacro make-clause ()
*(cons ail atl))

(defmacro clause-list (clause)
‘(car ,clause))

(defmacro psat (clause)
‘(cdr ,clause))

(defun add-clause (clist)
(et ((clause (add-2 clist))
(*noticers® nil))
(deduce-check clause)
(run-noticers)))

(defun add-2 (c-list)
(let ((clause (make-clause)))
(setf (clause-list clause) (merge c-list nil))
(mapc '(lambda (term)
(addf clause (clauses (car term) (cdr term))))
(clause-1ist clause))
(setf (psat clause) (comp-psat (clause-list clause)))
clause))

(deftail comp-psat (clist)
(if (null clist)
0

(if (not (false-term? (car clist)))
(1+ (comp-psat (cdr clist)))
(comp-psat (cdr clist)))))

: 6. APPENDIX I: THE TMS CODE -26- August 1980

(defun make-premise (node value)
(Yet ((*noticers® nil))
(cond ((unknown? node)
(set-truth node value))
((eq value (iruth node))
(setf (support node) nil))
(t (et ((*removed-1ist® nil))
(remove-truth node)
(set-truth node value)
(removed-check))))
(run-noticers)))

(defun set-truth (node value)
(set-2 node value)
(mapc '(lambda (noticer)
(addf noticer *noticers®))
(noticers node value))
{mapc ‘deduce-check (op-clauses node value)))

(defun set-2 (node value)
(mapc ' (lambda (clause)
(setf (psat clause) (1- (psat clause))))
(op-clauses node value))
(setf (truth node) value))

(defun deduce-check (clause)
{cond ((» (psat clause) 1)
(et ((term (unknown-term (clause-list clause))))
(if term
(deduce (car term) (cdr term) clause))))
((= (psat clause) 0)
(addf clause *contra-list*))))

(deftail unknown-term (clist)
(cond ((null clist) nil)
((unknown-term? (car clist))
(car clist))
{t (unknown-term (cdr clist)))))

{(defun deduce (node value sup-clause)

(setf (support node) sup-clause)
(set-truth node value))

h_«m__—-n—n-l-IUUllllllll-lllll----~.,"»‘q_”u:TrW.-..-.-...--.-..-'-..-.-‘-..'-..-...llllr".'.....-..'

6. APPENDIX I: THE TMS CODE -27- August 1980

(defun retract-premise (node)
(if (premise? node)
(et ((°*noticers® ail)
(*removed-11st® ail)) ;
(remove-truth node) |
{removed-check) |
{run-noticers))))

{(defun remove-truth (node)
(let ((value (truth node)))
{remove-2 node value)
(addf node ®removed-11st®)
(mapc ‘retract-check (op-clauses node value))))

(defun remove-2 (node value)
(if (unknown? node) (break removing-truth-of-unknown-node))
(mapc '(lambda (clause)
(setf (psat clause) (1+ (psat clause))))
(op-clauses node value))
(setf (truth node) 'unknown)
{setf (support node) nil))

(defun retract-check (clause)
(if (> (psat clause) 1)
(et ((node2 (satisfier (clause-list clause))))
(if (ang nodeZ (eq clause (support node2)))
(remove-truth node2)))))

(deftail satisfier (clist)
(cond ((null) clist) nil)
({true-term? (car clist))
(caar clist))
{t (satisfier (cdr clist)))))

All nodes whose support status has changed (the node’s previous support was invalidated) are passed
to the premise controller which determines if the premises should be changed based on the current support |
structure. '

(defun removed-check ()
(mapc 'node-deduce-check °*removed-1ist®)
{funcall *premise-checker® ®*removed-1ist®)
(mapc °(1ambda (node) i
{cond {{unknown? node)]
(mapc '(lambda (noticer) (addf noticer °noticers®))
L {(unknown-noticers node)))))
*removed-1ist®))

(defun node-deduce-check (node)
{cond ((unknown? node)
{node-check-2 node ‘'true (pos-clauses node))
(node-check-2 node ‘false (neg-clauses node)))))

(deftail node-check-2 (node value clauses)
(if clauses ’ 1
(et ((clause (car clauses)))
(if (= 1 (psat clause))
! (deduce node value clause)
(node-check-2 node value (cdr clsuses))))))

(deftail run-noticers ()
{cond (*contra-liste
(let ((contra (car *contra-l1ist®)))
(setq *contra-list® (car ®*contra-1ist®))
(if (= 0 (psat contra)) (backtrack contra))
(run-noticers)))
(*noticers®
(et ((next (car °®noticers®)))
(setg *noticers® (cdr *noticers®))
(eval next)
(run-noticers)))))

(defun backtrack (contrs)
(let ((prems (premises (clause-list contra))))
(1et ((prem (cond ((null prems) (break contradiction))
{{nulY (car prems)) (car prems))
(t (funcall *premise-selector® prems)))))
(let ((path (support-path prem (clause-list contra)))
(*removed-list® nil))
(invert path contra)

(removed-check)))))

(defmacro premises (clist)
‘(merge (premises2 ,clist) nil))

(defun premises? (clist)
(if clist
(if (true-term? (car clist))

(premises (cdr clist))

(if (premise? (caar clist))
(cons (caar clist) (premises (cdr clist)))
(nconc (premises (clause-list (support (caar clist))))

(premises (cdr clist)))))))

(defun refute (term)
(et (({node . value) term))
{(if (unknown? node)
(let ((*removed-list® nil)
(*noticers® nil)
(*contra-1ist® nil))
(set-truth node value)
(et ((path (support-path node (clause-1ist (car ®*contra-list®)))))
{if path
(invert path (car *contra-list®))
(remove-truth node))
(removed-check)
(run-noticers))
(if (unknown? node) nil t)) .
(print '(warning -- refutation attempted on known truth value)))))

The following is a useful utility in choosing premises for retraction

(defun user-choice (assums)
(push-query ‘((there is a conflict between)
,@(mapcar '(lambda (node)
{cons '(.(assertion node)
assumed to be
(truth node))
node))
assums)))
(print '(which assumption should be retracted?))
(answer (read)))

6. APPENDIX I: THF, I™MS CODE - 28 - August 1980

(delf prem ®*removed-list®) ;. the premise controller has already selected this node

6. APPENDIX I: THE TMS CODE -29- August 1980

A support path is a list of nodes such that for any two sequential nodes the latter node is in the
support clause for the former. ‘The function support-path is uscd to find a support path from a contradiction to
a premisc. (support-path node clist) returns a support path such that the first node in the path is in clist and
the path cnds with node.

(deftail support-path (node c-1ist)
(cond ((aull c-list) nil)
((true-term? (car c-1ist))
(support-path node (cdr c-1ist)))
{t (Yet ((node2 (caar c¢-1ist)))
(cond ((eq node node2)
(1ist node))
((premise? node)
(support-path node (cdr c-list)))
(t (1ot ((path (support-path node (clause-1ist (support nodez)))))
(if path
(cons node2 path)
(support-path node (cdr c~1ist))))))))))

(deftail invert (path contra)
(if path
(1et ((node (car path)))
(Vet ((path2 (circular-path node contra)))
(if path
(et ((nrode2 (car path)))
(let ((contra2 (add-2 (resolution (path-resolution path2)
(cisuse-1ist contra)
node2))))
(invert path contra2)))
(et ((next-contra (support node)) -
(value (truth node)))
(remove-truth node)
(deduce node (opposite value) contra)
(invert (cdr path) next-contra)))))))

(defun circular-path (node contra)
(support-path node (remove-node node (clause-list contra))))

(defun path-resolution (path)
(path-resolution2 (cdr path) (clause-list (support (car path)))))

(deftail path-resotution2 (rest-path clist}
(if (cdr rest-path)
(path-resolution2 (cdr rest-path)
(resolution clist
(clause-Vist (support (car rest-path)))
(car rest-path)))
clist))

(defun raesolution (clistl clist2 node)
(append (remove-node node clistl)
(remove-node node clist2)))

(deftail remove-node (node clist)
(if (eq (caar clist) node)
(cdr clist)
(cons {car c)ist) (remove-node node (cdr clist)))))

6. APPENDIX i: THE TMS CODE -30- August 1980

6.3. The Premise Controller

‘The premise controller is best understood in terms of the invariants it enforces. First a node with a
! default truth value (one that is in some premise priority class) can have its default value as 2 deduced value
(instead of as a premisc) only if all the premises underlying that deduction are in a stronger class. Such a node
can take on the oppusite of its default value only when the premises underlying that value arc in stronger
priority classes or when the node has been chosen explicitly by the user for retraction when it conflicts with
1 other premises in its own class.

(declare (special °min-cert® °*max-cert®})

{defun prmcon-init (minc maxc)
(tms-init 'prmcon-selector ‘prmcon-checker)
(setq *min-cert® minc)
(setq *max-cert® maxc))

(defmacro default (node)
*(cdr (virt-assq 'default (external-properties ,node)))) i

(defmacro default-certainty (node)
*{cdr (virt-assq 'default-certainty (external-properties ,node))))

{defun certainty (node)
{(cond ({unknown? node) 0)
({premise? node)
(default-certainty node))
(t (min-cert (support node)))})

{defmacro min-cert {(clause)
*(min-cert2 *max-cert® {clause-list ,clause)))

(defun min-cert2 (min-cert clist)
(cond ((null clist) min-cert)
] ({not (false-term? (car clist)))
T (min-cert2 min-cert (cdr clist}))
(t (min-cert2 (min min-cert (certainty (caar clist)))
(cdr c1ist)))))

(defun set-default (node value certainty)
(1f (not (numberp certainty)) (break (non numeric certafnty)))
(setf (default node) value)
(setf (default-certainty node) certataty)
(premise-check node))

(defun remove-default (node)
(setf (default node) ntil)
(if (premise? node) (retract-premise node)))

(defun prmcon-checker (nodes)
(mapc ‘'premise-check nodes))

(defun premise-check (node)
(it (default nade)
(cond ((or (unknown? node)
(not (< (default-certainty node)
{certainty node))))
(make-premise node (default node))))))

6. APPENDIX I: THE TMS CODE -31- August 1980

(defun prmcon-selector (premises)
(et ((assums (least-cert-promises premises)))
(if (cdr assums) ’
(user-choice assums)
(car assums))))

(defun least-cert-premises (premises)
(least-cert-2 (list (car premises))
(default-certainty (car premises))
(cdr premises)))

(defun least-cert-2 (so-far min-cert rest)
(if (null rest)
so-far : .
(et ((node (car rest)))
(let ((cert (default-certainty node)))
(cond {(< cert min-cert)

(least-cert-2 (1ist node) cert (cdr rest)))
((= cert min-cert)
(Veast-cert-2 (cons node so-far) min-cert (cdr rest)))
(t (least-cert-2 so-far min-cert (cdr rest))))))))

1
:
i
i
I

7. APPENDIX L UTILITY PROCEDURES -32- August 1980

7. APPENDIX 1I: UTILITY PROCEDURES

Most of the basic concepts behind the utilities described here have been developed by various
people other than the author and many of them arc documented in the 1.ISP MACHINE MANUAL
[Weinreb & Moon 78]

7.1. Basic Macros
7.1.1 BACKQUOTE

‘The backquote featurc provides a form of quote which replaces items preceded by a comma with
their value. The following are some examples of the use of backquote:

‘(foo a ,(+ 12)) evaluates to: (foo a 3)
'(foo .(1ist 'a *b) (1ist "a 'b)) evaluates to: (foo (a b) (Vist "a 'b))

Items in the interior of backquoted expressions which are preceded by @ have their values
cxploded into the top level list structure. An example of the use of this feature is as follows;

*(foo .@(Vist ‘a "b) ,(list 'a °'b) (1ist ‘a 'b))
evaluates to:

(foo a b (a b) (1ist 'a ‘b))

7.1.2 DEFMACRO

This form is used to define macros. A macro definition has a similar syntax to a function definition.
When a form whose car is a macro is evaluated the macro definition is used to generate a new form whose
value is the value returned for the original form. The arguments to the macro are bound to the forms in the
argument positions rather than their values as is done for functions. An example of a macro definition is given
below:

(defmacro first-part (x)
‘(caar ,x))

Using this definition (first-part a) macro expands to: (caar a) and so (fist-part a) has the same value
as: (caar a). A macro is often used instead of a trivial function definition because it is expanded within the
compiler and results in more cfficicnt compiled code.

It is sometimes convenient to allow the bound variable list of a macro to be an arbitrary list structure
rather than a simple list. In this case atoms in the bound variable list (or bound variable patrern, since it need
nat be a simple list) are bound to corresponding parts of the expression using the macro. For cxample the
new MACLISP form of do could have been defined as a macro along the following fines:

=y S

7. APPENDIX 11: UTILITY PROCEDURES -33- August 1980

(defmacro do (variable-bindings (end-test . end-body) . do-body)

‘The bound variable list may also be a single atom, in which case that atom is bound to the entire list

of "arguments” to the macro.

7.1.3 DEFMAC

defmac is identical to defun with the exception that a macro is created which the compiler can use to
open code the function during the compilation of other functions. This is used purely for rcasons of
cfficiency. The open coding is uscful in getting the compiler (and other optimization macros such as deftail)
to perform optimizations which would not otherwise be done. No function defined via defmac can be

recursive however since this would lcad to infinite expansion during open coding.

1.141F

{if a b ¢) macro expands to: (cond (a b) (t ¢)).
(if a b) cxpands to: (cond (a b)).

115 LET

The let feature allows structurced lambda binding. An example follows:

(tet ((a 1)
(b 2))
(+ a b))
is equivalent to:
{((Yambda (a b) (+ a b)) 1 2)
‘The let macro allows the the bindec of a binding pair to be an arbitrary list structure whose parts are
bound to the corresponding parts of the value being bound. This is convenient for dealing with functions

which conceptually return more than one value.
7.2. Side Effect Macros

7.2.1 SETF

The setf macro gives a general method for side effecting data structures. The following cquivalences

give some cxamples of its use:

(setf a b) is equivalent to: (setq a b)
(setf (get a b) ¢) (putprop a ¢ b)
(setf (car a) b) (rplaca a b)
(setf (cdr a) b) © (rplacd a b)

(setf (cond (a b) (c d))’e) (cond (a (setf b @)) (c (setf d e)))

7. APPENDIX 11 UTILITY PROCEDURES -4- August 1980

'The setf macro macroexpands its first argument. Thus it is possible to use setf in conjunction with
macros as is demonstrated below. ’

(defmacro foo (x)
‘(caar ,x))

3 (setf (foo a) b) macroexpands to (rplaca (car a) b)

7.2.2 DEFSIDMAC

defsidimac is just like defmacro cxccbl that it is used to define macros which side effect their last
argument and treats that argument position specially. Specifically it defines a macro which will embed the
. side effect in conditionals as does setf. To sce how this works consider the following definition of addf.

(defsidmac addf (x Tist)
‘(setf .list (cons ,x ,list)))

(addf x b) is equivalent to: (setf b (cons a b))
but
(addf x (if a b c)) is equivalent to: (if a (addf x b) (addf x c))

While it may scem obscure to write code which side effects conditional expressions, the ability to do

so can be importait when data structure macros expand to conditionals. In such situations it is sometimes
convenient to be able to side cffect applications of these macros.

1.2.3 INCREMENT

increment is defined by:

(defsidmac increment (x)
‘(setf .x (1+ ,x)))

7.2.4 ADDF

E
E addf is defined by: '

(defsidmac addf (x 1ist)
‘{setf ,list (cons ,x ,1ist)))

7.2.5 DELF

delf is defined as:

(defsidmac delf (x 1ist)
‘(setf ,1ist (delete ,x ,11st)))

7. APPENDIX 11: UTILITY PROCEDURES -35- August 1980

7.2.6 VIRT-ASSOC

‘This function is like assoc except that it is always guarantced to return a cons whose car is its first
argument, Furthermore if there was no such cons originally in the association list then the cons returned is
automatically addf'd to the alist. The following is a typical usc of virt-assoc

(defmacro foo (x)

‘(car ,x))

(defmacro other-properties (x)
‘(cdr ,x))

(defmacro bar (x)
"(cdr (virt-assoc ‘bar (other-properties ,x))))

(setf a (cons nil nil))
(setf (bar a) ‘'bar-val)

L ;a now is (nil . {((bar . bar-val)))
;(bar a) is now bar-val

7.2.7 VIRT-ASSQ

3 virt-assq is to assq as virt-assoc is to assoc,

7.3. Definition Macros
7.3.1 DEFSTRUCT

The defstruct feature is used to define a type of structured object. A defstruct definition creates a set
of macros. Onc of these macros is used to create objects of the defined type. The others are used to access the
parts of that object. Consider the following cxample:

(defstruct (ship) x-pos y-pos (mass 200))

Lot 4

This defines four macros: make-ship, x-pos, y-pos, and mass. Thc make-ship macro creates a ship
with its mass sct to a default value of 200. The following dialoguc illustrates a usc of these macros:

(SETQ HERO (MAKE-SHIP))
{ni1 nil 200}

(MASS HERO)
200

] (SETF (X-POS HERO) 10)
10

(X-POS HERO)
. 10

b

7. APPENDIX I1: UTHLITY PROCEDURES -36- August 1980

732 DEFTAIL

When deftail is uscd instead of defun in a function definition tail recursion optimization is
performed on the body of that definition. This feature actually does more than simple tail recursion
optimization in that simplc accumulations (functions which generate sums, products, or lists recursively) are
also converted to iterative forms,

1.3.3 DEFARB

defarb is identical to defun except that it allows the bound variable list to be an arbitrary list
expression. The atoms in this expression arc bound to the corresponding parts of the list of valucs to which
the defined is applicd. The most common usc of defarb is to have the bound variable patrern be a single atom
in which case that atom is bound to the list of arguments to the function. A function so defined can take an
arbitrary number of arguments.

7.4. Query Functions

7.4.1 PUSH-QUERY

This function takes a "query”, prints a “query list”, and pushes information on an internal data
structure which is used to “answer” the query. A query is a cons of an "initial query” and a "query-list”. The
initial query can be any s-expression and is printed as the first part of the printed query. The query list is an
association list of s-expressions with arbitrary objects. The printed query consists of the initial query followed
by an enumeration of the s-expressions in the query list. The following example should be useful.

(push-query (cons °'(the items of interest are)

(1ist (cons 'iteml 'answer1)

(cons 'item2 ‘answer2)
(cons "itemd ‘answerd))))

H which results in the following being printed:
({the items of interest are)
(1 iteml)
(2 item2)
(3 itemd))
7.4.2 ANSWER

‘This function is only mcaningful after a query has been pushed. It takes a single numecric argument
and returns the datum that was associated with the corresponding s-expression in the query cnumeration. For

example assumiug the previous query pushed was the above query, the answer would yicld the following
results: '

.

el e e i e

7. APPENDIX 1I: UTILI'TY PROCEDURES -37- August 1980

(answer 1) => answerl
(answer 2) => answer2
(answer 3) => answer3l

14.3 POP-QUERY

This function pops the query stack such that further calls to answer arec computed in the context of

an carlier query. .
7.5. Mapping Functions

All of the standard MACLISP mapping functions have been converted to macros which
macrocxpand to iterative forms. This allows one to map macros as well as normal functions, These macros
also provide a great deal of optimization not normally supplicd by the compiler. For example embedded
mappings, such as (mapc “foo (mapcar *bar 1)), macro cxpand into a single iterative form. Some non-standard
mapping functions and special forms relating to mapping functions have also been defined.

7.5.1 CIRCULAR-LIST

This function of onc argument returns an infinite, sclf referential list of that argument. ‘This is used
to create list arguments to mapping functions. For example a list of symbols could be set to nil with the

following expression:
T; {mapc 'set symbols (circular-list nil))

The mapping macros recognize circular-list arguments and produce iterative forms which avoid actually

creating the infinite list.
7.5.2 INTEGERS-BETWEEN

This function of two numeric arguments returns a list of all the integers between those arguments
inclusive. Thus one could convert an array to a list with the following code:

(mapcar 'ar-1 (circular-list array)
(integers-between 0 (1- (car (dimension array)))))

The mapping functions recognize integers-between forms and avoid actually creating such a list. Also because
nested mappings are merged, the above form could be given as an argument to a sccond mapping function
and the resulting code would be just as efficient as a single iteration over the clements of the array.

‘The second argument to integers-between can be the atom inf. ‘This is recognized by the mapping
functions which then treat the integers-between argument as an infinite list. However integers-between
actually only creates a finite list when given inf as its sccond argument.

R R I Y R i A . s I . "

7. APPENDIX 1L UTILETY PROCEDURES -38- August 1980

15.3 FMAPCAR

This is the same as mapcar except that all null elements arc removed from the list returned. Thus:

(fmapcar ‘foo 11)
is equivalent to:

(mapcan '(lambda (x) (list (foo x))) 11)

754 FORALL

This could have been defined as:

(defun forall (list pred)
(or (null 1list)
(and (funcall pred (car list))
(forall (cdr 1ist) pred))))

7.5.5 EXISTS

This could have been defined as

(defun exists (1ist pred)
(and 1ist
(or (funcall pred (car 1ist))
(exists (cor 1ist) pred))))

1.5.6 ACCUM

This could have been defined as:

{(defun accum (fun list temp-accum)
(if (nul) 1ist)
temp-accum
(accum fun
(cdr 1ist)
(funcall fun (car 1ist) temp~accum))))

7.5.7 LSUM, LPROD

These could have been defined as:

(defun Tsum (11st)
(accum ‘sum 1ist 0))

(defun 1prod (11st)
(accum ‘product tist 1))

7. APPENDIX i): UTILITY PROCEDURES

»-

7.6. Miscellancous Functions
7.6.1 MERGE

This is defined as:

(deftail merge (11 12)
{cona ((nul) 11) 12)
((member (car 11) 12) (merge (cdr 11) 12))
(t (merge (cdr 11) (cons (car 11) 12)))

7.6.2 HASH

This is a hashing function on s expressions.

August 1980

8. FUNCTION INDEX -40- August 1980

¢ 8. FUNCTION INDEX
->instance 22 INSLANTIALEooevereeee e cnen e e v e esseasss e ssranssens 2
ACCUMNceerronarenrscsssesssassssssnssessassssosens 38 INICECTS-DCIWEENoeoccrarrcrnres aestsarronsssasensersnacens 37
add-2. 25 IIIVEIT oo eerereteceses et rascesstresssserasesssn s snsansebsstsnsassons 29
add-clause 25 1CASI-COIT-2...con et eesesstessamase s s asasssraasseassens k)
AAE ..o eercerrerersens s esneresees 34 1eaSL-COI-PICIMISES......covvescmrenssonsrsseacnsisesneseesesessessases 31
ANA-INSLANCEcoovvereencareereerranseecerereaseanssesesassens 22 JOE ettt e s et s ens 3
ANSWET ..o cvructrressencmsesassscesserassserssssesensrapassasseses 36 HKCIY-INSLANCE....covereieerrerreres e reererrcresnraaesrec e e 2
BSSCT...ovecuernsececreraenseneaseesssssnsessesssassssssassssasaseas 2] IPFOQ .ot ter s snse et essases st ses st sresrasnns 38
ASSUMC ...eceeccteeercrrestetcnsesnssersessssssaransessasansses 21 ISUIM ...ttt nins s ss b s esssas s s sasnansens. 38
backquote........ccocreeeemncrcnsnenesnnenne .32 MAKC-CIAUSE .o cnvre s ersaraenas 25
DACKITACKcecrrienenerereiesssreseserrenseessrseseasssssens 28 MAKC PICIUSE «.veve v eeremecereeerereieesasssssteseserssssessssnress 26
COTMAMNLY c..orecerseereereressesmsenssasaenasesessrsresssnssssnsscas 30 ITICTEC .ecuvuieureecusrssencestecsesenesnsassissssananssesesesnssesessassanssens 39
circular-list . .37 MUMCOMT ..oeveeereerreneterscerecnssnsasessiossssesscsssassatssnssssasasansss 30
CIrCUIAr-Path......cccemueeveeenruireeveresesserenernnnsesssens 29 TIRCEILZ . .o.eteeerre e e seseerstiseseassessssatassannsarssasasnss 30
clause-list 25 NOAC-CHECK2 ...ttt e ssasessesasssonsnanaees 27
‘ Clauses......oueverrreencnenne 24 node-deducc-checkveeimccneecnirinsinecncsscnnene 7
' comp-psat .25 NOL-INSLANCE ..veverseererisierensssrnessssssnsorsassaseessnssssessrsssansase 2
. deduce 26 NOLICETSceccreermcenssanasessemsrees soemessantass soesbsessessessersesmerases U
. deduce-check 26 OP ClAUSES.....vvecevvevesranessessesssnseesssansasasesssassssssassssssssssens 24
defarb 36 op-term 24
default 30 OPPOSILE......o.eervecreranerrsrenreecerassmnsseassssessssecsseseas 24
default-certainty 30 Or-iNStancecoveveveenene 2
defmac..... 33 PAth-TCSOIULIONvcurvenerernecaresensnnsereessnsssneneeasassocsions 29
defmacro kY] path-resolution2 29
defsidmac 34 pop-query kY)
defstruct 35 premise-check 30
deftail .. 36 premise? 24
delf .34 premises 28
exists 38 premises2 28
false-term? .24 prmcon-checker 30
fmapcar 18 prmcon-init 30
forall.. 38 prmcon-selector... K} |
hash 39 psat 25
if ... kX) push-query 36
in-funs 21 referenced-node pat
M refute 28

-

8. FUNCTION INDEX'

INACX coveererierenneecreenesesssessssrasannes 21
remove-defauit .. 30
TCMOVE-NOGL ... cevereneeiererteserssssssessssasasessessacss 29
FEMOVE-ITULN ..ottt s seeereaens 27
removed-check 27
TCSOMILION ...veericncnsecnsrienisstreesesssens e ssssasessesenas 29
retract... 21
retract-checkcveiveee. 27
FCUTACE-PICIMISE. ceveveerennrarnermsasssn sreasassstentenns 27
TUN-NIOUCETS....oecrererecearrnmarmsrsssasnesecseasassssssasens 28
satisfier. .27
set-2... .26
sct-default .. 30
L7170 11111 SO 26

-41- August 1980
FOMOVE-2cooreeverrcrrecseensessssmenassssssanssessessssessssssasassans 27
SOLE v rarrusssnsesresssnsssssresssassasesessasssasasssas essusasssnssnaeasasions 33
SUPPOTTPALNccereeecmnn e s sessastssssions ps’)
tms-init.......cooreeenne. 24
truc-term? 24
trY-10-ShOW.....crueenerecrreereconeane 23
UNKAOWN-LCIML.....ceonecererraessncres 26
unknown-term? 24
UNKNOWN ..coniniricistccrninceisressiesasnasnnssesmsesasasnons 24
USCTChOICEeeveeereirecoresssnneresessrsanssnsesssussaosasssssranes 28
very-HKely-Instance...........ooeeereeinesreevensens 22
virt-assoc 35
VIMt-285Q ceveuenerereccssmnsensnnees 35
WHY et ese s s s res e s sa s e aetes 23

9. REFERENCES -42- August 1980

9. REFERENCES

[Davis & Putnam 60] Martin Davis, Hilary Putnam
"A Computing Procedure for Quantification Theory.”
Journal of the Association for Computing Machinery, Vol. 7, pp. 201-215, 1960

[de Klieer ct. al. 77] Johan de Kleer, Jon Doyle, Guy Stecle, Gerald Sussman.

Explicit Controlg of Reasoning.
MIT Al Lab Memo 427 (Cambridge June 1977).

[de Kieer & Sussman 78] Johan de Klecr, Gerald Jay Sussman,

Propogation of Constraings Applied to Circuit Synthesis,
MIT Al L.ab Memo 485 (Cambrige, Scptember 1978).

[Doyle 77] Jon Doyle.

Truth Maintcnance Systems for Problem Solving.
M.S. thesis (May 1977). Also MIT Al Lab Technical Report 419 (Cambridge, Scptember 1978).

[Doyle 78] Jon Doyle. ;
A Glimpse of Truth Maintcnance. . ' 4
MIT Al Lab Memo 461a (Cambridge 1978).

[Fikes 75) Richard E. Fikes
"A Deductive Retrieval Mechanism for State Descriptor Models™
SR1I Al Technical Note 106

[Fikes 71) Richard E. Fikes, N. J. Nilsson.
"STRIPS: a New Approach to the Application of Theorem Proving to Problem Solving™
Artificial Intelligence 2, 1971, pp. 189-208.

[Hewitt 72] Carl Hewitt

Description and Theoretical Analvsis of PLANNER: a Language for Proving Thcorems and ;

Mapipulating Models in a Robot. j
MIT Technical Report 258, 1972, i

[L.ondon 78} Philip E. London.
Dependency Networks as 2 Representation for Modelling General Problem Solvers.
Ph.1). thesis U. Maryland, Dept. of Computer Science Technical Report 698 (College Park, Maryland,
Scptember 1978). :

9. REFERENCES -43- August 1980

[McAlester 80) David A. McAllester

The Usc of Equality in Deduction and Knowledge Representation
MIT Al Lab Technical Report 520, February 1980.

McDenmott 74] Drew McDermott, Gerlad J. Sussman,

The CONNIVER Reference Manual
MIT Al Lab Mcemo 259a, 1974,

[McDermott 78] Drew McDermott, Jon Doyle
Non-monotonic Logic]
{ MIT Al Lab Memo 486, 1978, Also to appcar in Artificial Intelligence 13.

{(Moore 75]) Robert C. Moore

Reasoning From Incomplete Knowledge in a Procedural Deduction System.
MI'T Al Lab Technical Report 347 (Cambridge December 1975).

[Nelson & Oppen 79] Greg Nelson, Derck C. Oppen
"Simplification by Cooperating Decision Procedures”
ACM Transactions on Programming l.anguages and Systems, Vol. 1, No. 2, October 1979, Pages 245-257.

[Reiter 79) Raymond Reiter
A Logic for Default Reasoning.

University of British Columbia, Department of Computer Science, Technical Report 79-8.

{Shrobe 79] Howard E. Shrobe

Dependency Directed Reasoning for Complex Program Understanding
MIT Al Lab Technical Report 405 (Cambridge June 1979).

t [Stallman & Sussman 77] Richard M. Stallman, Gerald Jay Sussman.

% "Forward Reasoning and Dependency Directed Backtracking in a System for Computer-Aided Circuit
Analysis."”

Artificial Inteltigence 9 (1977), 135-196.

[Stecle & Sussman 78] Guy Lewis Stecle Jr., Gerald Jay Sussman.

on 3
MIT Al L.ab Memo 502 (Cambridge, May 1978). Also Proc. APL.79 Conference (Rochester, May 1979).

v — s .- © men e e =+ @ St e e e

9. REFERENCES ' -44- August 1980

{Sussman 71} Gerald J. Sussman, Terry Winograd, E. Charniak.

Migro Planner Reference Manual
MIT Al L.ab Memo 203a, 1971

[Sussman 77} Gerald J. Sussman.
"Electrical Design: a Problem for Artificial Intelligence Research”
in JCAI-77, pp. 894-900, 1977.

[Waltz 72) David 1.. Waltz.
Gengerating Semantic Descriptions from Drawings of Scencs With Shadows.
MIT Al ‘T'echnical Report 271, November 1972,
Also in The Psychology of Computer Vision, Patrick H. Winston (ed.), McGraw-Hill, 1975,

[Weinreb & Moon 79] Danicl Weinreb, 1Javid Moon.

MI'T Artificial Intelligince .aboratory, 1979

- . : e

